Gamma Kernel Estimators for Density and Hazard Rate of Right-Censored Data
نویسندگان
چکیده
The nonparametric estimation for the density and hazard rate functions for right-censored data using the kernel smoothing techniques is considered. The “classical” fixed symmetric kernel type estimator of these functions performs well in the interior region, but it suffers from the problem of bias in the boundary region. Here, we propose new estimators based on the gamma kernels for the density and the hazard rate functions. The estimators are free of bias and achieve the optimal rate of convergence in terms of integrated mean squared error. The mean integrated squared error, the asymptotic normality, and the law of iterated logarithm are studied. A comparison of gamma estimators with the local linear estimator for the density function and with hazard rate estimator proposed by Müller and Wang 1994 , which are free from boundary bias, is investigated by simulations.
منابع مشابه
Density Estimators for Truncated Dependent Data
In some long term studies, a series of dependent and possibly truncated lifetime data may be observed. Suppose that the lifetimes have a common continuous distribution function F. A popular stochastic measure of the distance between the density function f of the lifetimes and its kernel estimate fn is the integrated square error (ISE). In this paper, we derive a central limit theorem for t...
متن کاملDensity Estimation of Censored Data with Infinite-Order Kernels
Higher-order accurate density estimation under random right censorship is achieved using kernel estimators from a family of infinite-order kernels. A compatible bandwidth selection procedure is also proposed that automatically adapts to level of smoothness of the underlying lifetime density. The combination of infinite-order kernels with the new bandwidth selection procedure produces a consider...
متن کاملComparison of the Gamma kernel and the orthogonal series methods of density estimation
The standard kernel density estimator suffers from a boundary bias issue for probability density function of distributions on the positive real line. The Gamma kernel estimators and orthogonal series estimators are two alternatives which are free of boundary bias. In this paper, a simulation study is conducted to compare small-sample performance of the Gamma kernel estimators and the orthog...
متن کاملDensity and hazard rate estimation for right censored data using wavelet methods
This paper describes a wavelet method for the estimation of density and hazard rate functions from randomly right censored data. We adopt a nonparametric approach in assuming that the density and hazard rate have no speci c parametric form. The method is based on dividing the time axis into a dyadic number of intervals and then counting the number of events within each interval. The number of e...
متن کاملKernel Ridge Estimator for the Partially Linear Model under Right-Censored Data
Objective: This paper aims to introduce a modified kernel-type ridge estimator for partially linear models under randomly-right censored data. Such models include two main issues that need to be solved: multi-collinearity and censorship. To address these issues, we improved the kernel estimator based on synthetic data transformation and kNN imputation techniques. The key idea of this paper is t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014